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Abstract

Proposed as a general framework, Liu and Yu [6] introduced (n, k, d)-graphs to unify
the concepts of deficiency of matchings, n-factor-criticality and k-extendability. Let G
be a graph and let n, k and d be non-negative integers such that n+2k+d+2 < |V(G)|
and |[V(G)| —n — d is even. If deleting any n vertices from G, the remaining subgraph
H of G contains a k-matching and each k-matching can be extended to a defect-d
matching in H, then G is called an (n,k,d)-graph. In this paper, we obtain more
properties of (n, k, d)-graphs, in particular the recursive relations of (n, k, d)-graphs for
distinct parameters n,k and d. Moreover, we provide a characterization for maximal
non-(n, k, d)-graphs.
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1 Introduction

All graphs considered in this paper are finite, connected, loopless and have no multiple edges.
For the most part our notations and terminologies follow that of Bondy and Murty [3].

Let G be a graph with vertex set V(G), edge set E(G) and minimum degree §(G). A
matching M of G is a subset of F(G) such that any two edges of M have no vertices in
common. A matching of k edges is called a k-matching. For a matching M, we use V(M) to
denote the vertices incident to the edges of M. Let d be a non-negative integer. A matching
is called a defect-d matching if it covers exactly |V (G)| — d vertices of G. Clearly, a defect-0
matching is a perfect matching. For a subset S of V(G), we denote by G[S] the subgraph
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of G induced by S and we write G — S for G[V(G)\S]. The number of odd components of
G is denoted by ¢o(G). The join GV H of two graphs G and H is a graph with vertex set
V(G) UV (H) and edge set E(G)UEH)U{zy | x € V(G), y € V(H)}. We denote the
complement of G' by G. A set T is called n-set if |T| = n. For two disjoint sets A and B of
V(G), we define E(A,B) ={zy : = € Aand y € B} N E(G).

Let M be a matching of G. If there is a matching M’ of G such that M C M’, we say
that M can be extended to M’ or M’ is an extension of M. Suppose that G is a connected
graph with perfect matchings. If each k-matching can be extended to a perfect matching
in G, then G is called k-extendable. To avoid triviality, we require that |V (G)| > 2k + 2
for k-extendable graphs. This family of graphs was introduced by Plummer [9]. A graph G
is called n-factor-critical if after deleting any n vertices the remaining subgraph of G has
a perfect matching. This concept is introduced by Favaron [4] and Yu [10], independently,
which is a generalization of the notions of the well-known factor-critical graphs and bicritical
graphs, the cases of n = 1 and 2, respectively. In [8], Lou investigated relationship between
2k-factor-criticality and k-extendability.

Let G be a graph and let n,k and d be non-negative integers such that |V (G)| >
n+2k+d+2and |V(G)| —n—dis even. If deleting any n vertices from G the remaining
subgraph of G contains a k-matching and each k-matching in the subgraph can be extended
to a defect-d matching, then G is called an (n, k, d)-graph. This term was introduced by Liu
and Yu [6] as a general framework to unify the concepts of defect-d matchings, n-factor-
criticality and k-extendability. In particular, (n,0,0)-graphs are exactly n-factor-critical
graphs and (0, k, 0)-graphs are just the same as k-extendable graphs. In [5,6], the recursive
relations were shown for distinct parameters n, k and d and the impact of adding or deleting
an edge for d > 0 was discussed. In this paper, we continue the investigation of (n, k, d)-
graphs and obtain more recursive relations.

A graph G is called a mazimal non-(n, k,d)-graph if G is not an (n, k, d)-graph, but GUe
is an (n, k, d)-graph for every edge e € E(G). In [1], Ananchuen, Caccetta and Ananchuen
studied maximal non-k-factor-critical graphs and maximal non-k-extendable graphs, they
also provided a characterization of these graphs. In the current paper, we generalize their

criteria to obtain a characterization of maximal non-(n, k, d)-graphs.

2 Known Results

A necessary and sufficient condition for a graph to have a defect-d matching was given by
Berge [2].

Lemma 2.1 (Berge, [2]) Let G be a graph and d an integer such that 0 < d < |V(G)| and
|[V(G)| =d (mod 2). Then G has a defect-d matching if and only if for any S C V(Q)

C()(G — S) S ‘S‘ +d.

In [6], Liu and Yu showed the following sufficient and necessary conditions for (n, k, d)-
graphs.



Lemma 2.2 (Liu and Yu, [6]) A graph G is an (n,k,d)-graph if and only if the following
conditions hold:

(a) for any S C V(QG) such that |S| = n, then

co(G—=8)<|S|—n+d,

(b) for any S C V(G) such that |S| = n + 2k and G[S] contains a k-matching, then

co(G—95)<|S|—n—2k+d.

It is a natural problem to find recursive relations among the graphs with different pa-
rameters n, k and d. Below is one of such results.

Lemma 2.3 (Liu and Yu, [6]) Every (n,k,d)-graph is also an (n',k',d)-graph, where 0 <
n' <n,0<k <k andn' =n (mod 2).

3 Main Results

Following the study of recursive relations of the previous work, we continue to investigate
the effect of various graphic operations on (n, k, d)-graphs and recursive relations. We start
with the following lemma.

Lemma 3.1 If G is an (n, k,d)-graph, then it is also an (n — 2,k + 1,d)-graph.

Proof. At first, note that G is an (n — 2,0, d)-graph by Lemma 2.3. Since |V(G)| >
n+ 2k +d+ 2, for any (n — 2)-set S C V(G) there exist (k + 1)-matchings in subgraph
G-S.

Suppose, to the contrary, that G is not an (n—2, k+1, d)-graph. Then, by the definition,
there exist an (n — 2)-set R C V(G) and a (k + 1)-matching M which cannot be extended
to a defect-d matching of G — R. By Lemma 2.1 and parity, there exists a subset Sy in
G — R — V(M) such that

Co(G—R—V(M)—SQ) > ‘So|—|—d+2.

Let S = SURUV(M). Then |S| = |So| + |R| +2(k+ 1) > n + 2k and G[S] contains
k-matchings, and

co(G—=8)=c(G—=Sog—R—-V(M)) =2|So| +d+2=|S| —n—2k+d+2,

a contradiction to Lemma 2.2 (b). O

Theorem 3.2 A graph G is an (n+ 2,k — 1,d)-graph if and only if G is an (n, k,d)-graph
and G Ue is an (n,k, d)-graph, for any e € E(Q).
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Proof. If G is an (n + 2,k — 1,d)-graph, by Lemma 3.1, then G is an (n, k, d)-graph.

We show that G U e is an (n, k,d)-graph for any e € E(G). Otherwise, there exists

an edge e; € E(G) such that G’ = G U {e1} is not an (n, k, d)-graph. By Lemma 2.2, we
consider two cases:

Case 1. There exits a subset S C V(G') = V(G) such that |S1| > n and ¢o(G' — S1) >
|S1| — n + d + 2. However,

co(G = 51) = co(G' = S1) > [S1] —n+d+2,

a contradiction to that G is an (n, k, d)-graph and Lemma 2.2 (a).

Case 2. There exits a subset So C V(G') = V(G), where |Sa| > n + 2k and G'[S5]
contains a k-matching My such that

CQ(G/—SQ) > ]Sg]—n—2k—|—d+2.

If e; & Mo, then |Sa| > n + 2k and G[S3] contains the k-matching My, and ¢o(G — S2) >
co(G" — S2) > |S2| — n — 2k + d + 2, a contradiction to that G is an (n,k,d)-graph and
Lemma 2.2 (b). So e; € M. Let M) = My —{e1}. Then |Ss| > n+2k=(n+2)+2(k—1)
and G[S2] contains the (k — 1)-matching M. Moreover,

0(G — 82) = (G — S5) = |Sa| = — 2k +d+2 =S| — (n+2) — 2k — 1) +d +2,

a contradiction to that G is an (n + 2,k — 1, d)-graph.
Next we prove the sufficiency. Suppose that G is not an (n + 2,k — 1,d)-graph. Then
there exist an (n+ 2)-set S3 C V(G) and a (k — 1)-matching M3 which cannot be extended

to a defect-d matching of G — S3 — V(M3). By Lemma 2.1, there exists a vertex set
R C V(G — S3 —V(Ms3)) such that

Co(G—Sg —V(Mg) —R) > |R| +d+ 2.

For any two vertices u,v of Ss, if uv € E(G), denote ey = uv, M} = M3 U {ea}, and
S5 = S3\ {u, v}, then we have

co((GUez) — 85— V(M3) — R) = co(G — S5 — V(M3) — R) > |R| +d +2,

a contradiction to the fact that G Ue is an (n, k, d)-graph, for any e € E(Q); if uv € E(G),
then |S5| = n and M} is a k-matching of G, and

Co(G — Sé — V(Mé) - R) = Co(G — Sg — V(M3) - R) = ‘R’ +d+ 2,

a contradiction to that G is an (n, k, d)-graph. O
Applying Lemma 3.1, we have a sufficient and necessary conditions (n+ 2k, 0, d)-graphs.

Theorem 3.3 A graph G is an (n + 2k,0,d)-graph if and only if G is an (n,k,d)-graph

and for any edge set D C E(G), GU D 1is an (n, k,d)-graph.
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Proof. If G is an (n+2k, 0, d)-graph, clearly GUD is also an (n+ 2k, 0, d)-graph. Applying
Lemma 3.1 repeatedly, we see that G U D is an (n, k, d)-graph.

On the other hand, suppose that G is not an (n + 2k, 0, d)-graph, by Lemma 2.2, there
exists a subset S with |S| > n + 2k such that

co(G — S) > |S| — (n + 2k) + d + 2.

Let S = {uq,...,up}, where h > n+2k and G’ = GU{ug;—qu9; | i =1,...,k}. Then G'[5]
contains a k-matching and we have

co(G' = 8) =co(G—S) > |S| — (n+2k) +d+2.

By Lemma 2.2 (b), G’ is not an (n, k, d)-graph, a contradiction. O

Let n = 0 and d = 0, we have the next corollary.

Corollary 3.4 (Lou, [8]) A graph G of even order is 2k-factor-critical if and only if

(a) G is k-extendable; and

(b) for any edge set D C E(G),G U D is k-extendable.

In [7], Liu and Yu present several results about (n, k,0)-graphs and its subgraphs. In
particular, they proved that if G — V' (e) is an (n, k,0)-graph for each e € F' (where F is a
fixed 1-factor in G), then G is an (n, k,0)-graph. We generalize this result for any d > 0
and n > d + 2.

Theorem 3.5 Let F' be a perfect matching of a connected graph G, where |V(G)| = n +
2k+d+4 and n > d+ 2. If subgraph G — V (e) is an (n,k,d)-graph for each e € F, then
G s also an (n,k,d)-graph.

Proof. Assume that F' is a perfect matching of G such that G — V' (e) is an (n, k, d)-graph
for each e € F'. To see the existence of k-matchings in the subgraphs, we show a claim.

Claim 1. For any n-set T'C V(G), G — T contains k-matchings.

If FNE(G—T) = (), then there exists an edge e = ab € F such that a € T and
be V(G-T). Let T = T\ {a} U {c}, where ¢ € V(G) — T — {b}. Then |T'| = n and
FNE(G-T) = {e}. By the assumption of the theorem, G — V' (e) is an (n, k, d)-graph.
Hence, G — V(e) — T" has a defect-d matching M;. Since |V(G)| > n+ 2k +d + 4, My
contains at least k + 1 edges. Therefore, G — T contains k-matchings.

IEFNEG-T)#0,let e =abe FNE(G—T), then G — V(e) is an (n, k, d)-graph.
So G — V(e) — T contains k-matchings and thus G — T contains k-matchings.

Suppose that G is not an (n, k, d)-graph, by the definition and Claim 1, there exists a
vertex-set R of order n in G and a k-matching M of G — R such that G — R — V(M) has



no defect-d matchings. Let G' = G — R — V(M), by Lemma 2.1 and parity, there exists a
subset S in G’ so that

(G —8)=c(G—R—-V(M)—S)>|S|+d+2. (1)
Claim 2. FANE(GIRUS]) = FN1M = FNE(V(M),RUS) = FnE(C;) = FN
E(S,V(C;)) =0 for all C;, where C; is an odd component of G' — S.
If there exists an edge e € (FNE(R))U (FNE(S)), say e € N E(R), then we have
co(G—=V(e) = (R\V(e) =V (M)—2S)=cy(G'—=8) > |S|+d+2.

So G—V (e) is not an (n—2, k, d)-graph, a contradiction to that G—V (e) is an (n, k, d)-graph
and Lemma 2.3.

If there exists an edge e € F'N E(R,S), where e = ab,a € S;b € R. Let c € C;, R’ =
R\ {b} U{c}, and 8" = S\ {a}. Then we have

co(G—V(e)—R —V(M)—8) > co(G' —8)—1>|S| +d+2.

Thus G — V(e) is not an (n, k, d)-graph, a contradiction.
If there exists an edge e € F'N M, then we have

(G —V(e)—R—V(M\{e})—8) =co(G' — 8) = |S] +d+2.

Thus G — V(e) is not an (n,k — 1,d)-graph, a contradiction.

Suppose that e € FNE(V(M),R). Let e = uv and ua € M, where u € V(M) and
v € R. Let Ry = (R\{v}) U {a} and M" = M\{ua}. Then

co(G—=V(e)— R —V(M")—=8)>|S|+d+2.

Thus G — V(e) is not an (n,k — 1,d)-graph, a contradiction.
Using the similar arguments, we may show e ¢ E(S) U E(V(M),S) U (UE(C;)) U

E(S,V(C;)) for any e € F.
Claim 3. G’ — S has no even components.

Otherwise, let D be an even component of G’ — S and e = ab € F,a € V(D). If b € R,
choose a vertex ¢ € V(D) \ {a}, let Ro = R\ {b} U{c}, then

co(G—=V(e)— Ry —V(M)—58) = co(G' = S) = |S|+d+2.

Thus G—V (e) is not an (n, k, d)-graph, a contradiction. For b € S, we arrive at a contradic-
tion with a similar argument. So we may assume b € V(M). Let bc € M. Set S = SU{c}.
Note that G'[D \ {a}] contains at least one odd component. So we have

co(G—V(e) = R—V(M\ {bc}) — S1) = |Si| +d +2.
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Hence G — V (e) is not an (n,k — 1, d)-graph, a contradiction.

Finally, if e is in the component D, then
co(G=V(e)—R—-V(M)—S8)>c(G'—8S)>|S|+d+2.

Thus G — V(e) is not an (n, k, d)-graph, a contradiction again.

For any vertex x € S, by Claim 2 x can not be matched in perfect matching F' to any
other vertex in S or any vertex in RU V(M) or any vertex in an odd component, so we
conclude S = 0.

Claim 4. co(G' —S) = co(G') =d + 2.

By (1), we need only to show ¢y(G’) < d + 2. Otherwise, suppose c¢o(G') > d + 3. If
there exists an edge e = ab € F N E(R,C;), where a € C; and b € R, we choose a vertex x
from another odd component C; and let Ry = R\ {b} U {z}, then

Co(G — V(@) — R — V(M)) > Co(G/) —2>d+1.

Thus G — V (e) is not an (n, k, d)-graph, a contradiction. Next, we assume that all vertices
in U;C; are matched to V(M). Consider the alternating path P = ¢;z1y1 ... 2mYme; of
F U M starting at C; and ending at C;. Let e = ¢z € F and M’ = M A (P \ {e}). Then

(G V()= R—V(M)) = co(G)—2=d+1,

a contradiction.

Now we proceed to the proof of the theorem.

Since |V(G")| = d + 4 and ¢y(G’") = d + 2, there exists one odd component of order at
least three. Moreover, as n > d + 2, ¢o(G') =d+2 and FN(E(R,V(M))U E(R)) = 0,
there must exist an edge e = ab € F' from R to an odd component C; with |C;| > 3, where
a € C; and b € R. Since |C;| > 3, choose a vertex x € C; \ {a}. Let Ry = R\ {b} U {x}.
Then

co(G = V(e) = Ry = V(M)) > co(G') = d + 2,
a contradiction.

We complete the proof. O

In [5], Jin, Yan and Yu proved the recursive relation for adding a vertex.

Theorem 3.6 (Jin, Yan and Yu, [5]) Let G be an (n,k,d)-graph with k > 0 and n > d.
Then GV x is an (n+ 1,k — 1,d)-graph for any vertez x ¢ V(G).

Here we present an example to show that the condition n > d is necessary.

For £ > 0 and n < d, let d = n + r for some » > 0. We consider a bipartite graph
H = Ky m+r, where m > n+ k. Then H is an (n,k,n + r)-graph, but H V z is not an
(n+1,k—1,n+ r)-graph.



4 Maximal non-(n, k,d)-graphs

In this section, we provide a characterization of maximal non-(n, k, d)-graphs, which is a
generalization of the characterization of maximal non-k-factor-critical graphs in [1].

Theorem 4.1 Let G be a connected graph of order p and n,k,d be positive integers with
p+n+d=0 (mod 2). Then G is a mazimal non-(n, k,d)-graph if and only if

G = Kpiokts V (UfiszK%ﬂrl)»

where s and t; are non-negative integers with Zfifl+2 t; = W —s—1.

Proof. Let H = K, o145 and G; = Koy, 41 for 1 <4 <j—|—d+2. Suppose that the theorem

does not hold. That is, there exists an edge e € E(G) such that G’ = G U e is not an
(n, k,d)-graph. Then e is an edge connecting G; and G for some i and j.

By Lemma 2.2 and the parity argument, then either
(a) there exists a subset S" in G’ with |S’| > n and ¢o(G' — S') > |S'| = n+d+2; or

(b) there exists a subset S’ in G’ such that |S’| > n + 2k and S’ contains a k-matching
satisfying ¢o(G' —S") > |S'| —n — 2k + d + 2.

Clearly, V(H) C S’ and so S’ contains a k-matching. Thus we need only to consider (b).
Hence we have co(G' = S) > |S'| = n—2k+d+2 2 |V(H)| —n—2k+d+2>d+s+2.
If co(G' —S') = d+ s+ 2, then |S'| = n+ 2k + s and so 8" = V(H). Therefore we
have ¢o(G' — S') = d + s, a contradiction. Hence we have |S’| > n + 2k 4+ s and then
co(G'— 8" >d+ s+ 2. But G'— S’ contains at most s + d + 2 odd components, a
contradiction.

Now we prove the necessity. Since G is a maximal non-(n, k, d)-graph, for any n-subset
R of V(G) there exists a k-matching M in G — R. Let G’ = G — R —V(M). By Lemma
2.1 and parity, there exists a set S’ in G’ such that

co(G' =8 > |5 +d+2.

Let Cy,Cy,...,C, be odd components in G’ — S’ and |S’| = s. We show that r = s +d + 2.
Otherwise, > s+d+3 and so r > s+ d+4 by parity. Let e = ¢jca, where ¢; € V(C7) and
¢y € V(Cy). Clearly, (GUe) — (RUM US’) contains at least s + d + 2 odd components,
i.e., GUe is not an (n,k,d)-graph, a contradiction to the fact that G is a maximal non-
(n, k, d)-graph.

We next show that G’ — S’ has no even components. Otherwise, assume that G’ — S’
contains an even component D. Let e = dc;, where d € D and ¢; € V(C}), and consider
GUe. Clearly, (GUe)— (RUM US’) contains exactly s+ d + 2 odd components since the
components D and C] together with the edge e forms an odd component of G Ue. Thus
G Ue is not an (n, k, d)-graph, a contradiction.

Finally we show that G[R U M U S’] is complete. Otherwise, there exist vertices z and
yin RUM US’ such that e = 2y ¢ F(G). Consider GUe. Since (GUe) — (RUM U S")
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contains exactly s+ 2+ d odd components, G U e is not an (n, k, d)-graph, a contradiction.
By a similar argument, it is easy to see that each C; is complete for 1 < i < s+ d + 2.
Furthermore, each vertex of C; (1 < i < s+d+2) is adjacent to every vertex of GIRUMUS’].

Now, for 1 <i < s+d+2, let [V(C;)| = 2t; + 1 for some non-negative integer ¢; . Then
p=[V(GQ)| = n+2k+s+ 302 |V (Ch)| = n4-2k+25+d+242 35502 1 > ny 2k+2s5+d+2.
Therefore, 0 < s < L;k_d —1 and Zfif 24, = % — s — 1 are as required. This
completes the proof of the theorem. O
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